How to translate an antibiogram into a treatment ? Gram-negative bacteria

Y. Glupczynski

Laboratoire de microbiologie Cliniques Universitaires UCL-Mont-Godinne Université Catholique de Louvain

SBIMC-BVIKM 21/04/2005

Major antimicrobial resistance problems in Gram-negative bacteria

- Enterobacteriaceae (E. coli, Klebsiella, Enterobacter)

- ✓ <u>Beta-lactams</u> (3rd, 4th generation cephs)
 - Extended-spectrum Beta-lactamases (ESBL)
 - Cephalosporinases
- ✓ <u>Fluoroquinolones</u>
 - Mutation in chromosomal genes (gyrA/B, Par C/E)

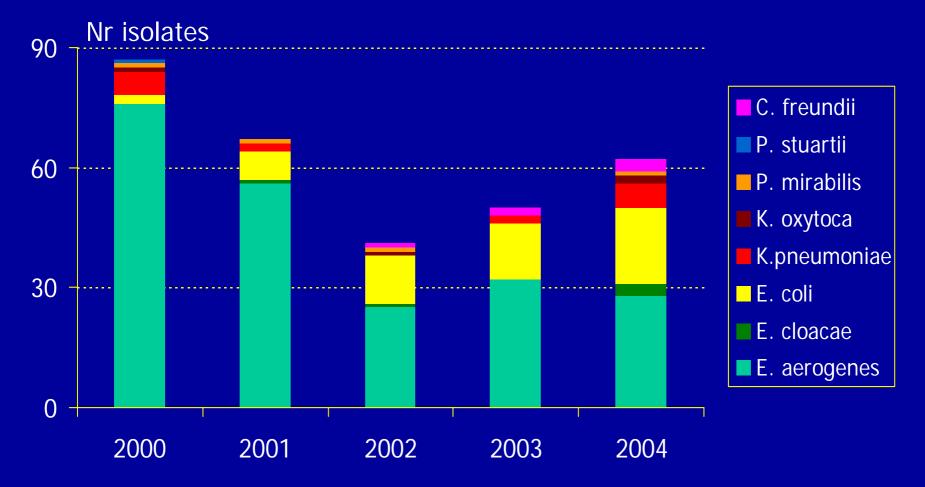
- Non-fermenters (Pseudomonas, Acinetobacter)

✓ <u>Beta-lactams</u> (3rd, 4th generation cephs)

- Cephalosporinases
- ESBL
- Carbapenemases
- Altered permeability / Active efflux
- \checkmark <u>Multi-drug resistance</u> (β-lactams, aminoglycosides, fluoroquinolones)

Extended-spectrum beta-lactamases (ESBL)

- Plasmid-mediated enzymes (<u>TEM</u>, <u>SHV</u>, <u>CTX-M</u>, OXA, VEB, PER,...)
- Mediate resistance to by hydrolysis of extended-spectrum cephalosporins (3rd and 4th generation) and monobactams (aztreonam)
- Do not inactivate carbapenems, cephamycins (cefoxitin), temocillin
- Activity inhibited by β-lactamases inhibitors (clavulanate, tazobactam)


Characteristics of ESBLs

Enzyme family	TEM	SHV	ΟΧΑ	CTX-M
Total number in family	135	54	57	34
Number of ESBLs	108	52	12	34
Amino acids in enzyme	286	292	266	290
Nr of AA positions with substitutions	37	32	19	Sequences may differ by 20-25%
Maximum Nr of mutations	6	7	9	ND
Most common substitutions	E104K, R164S, R164H, M182T, E240K	L35Q, G238S, G238A	I10T, G20S, T110S, Y184F, E240G, S258S	ND

Prevalence of ESBL Producing Enterobacteriaceae in Europe

	% ESBL					
Country	1997	1998	1999	2000	2001	2002
Russia	24	34	42	47	22	30
Poland	37	23	21	40	33	37
Turkey	-	-	23	40	21	26
Czech Republic	5	8	8	6	14	10
Italy	40	10	15	9	11	7
UK	5	7	22	7	6	11
Germany	2	3	1	5	2	3
Belgium	-	6	5	8	5	8

Distribution of ESBLs among Enterobacteriaceae species UCL Mont-Godinne (2000-2004)

ESBL-producing Gram-negative bacteria: Risk factors for infection and impact of resistance on outcome

- Matched case-control study (33 pts with infections due to ESBL isolates vs 66 controls with ESBL-negative isolates)
- Independent Risk factors: total prior antibiotic exposure (3rd gen cephs; OR: 16; p<0.01; cotrimoxazole; OR: 20; p= 0.004)
- Longer median duration of hospital stay (11 days vs 7 days) and higher total hospital charges (66,000 \$ vs. 22,000 \$) in cases versus controls
- Documentation of the spread of several closely-related clusters of E.coli/klebsiella ESBL + isolates Lautenbach, CID 2001

ESBL: detection problems

- Over 150 enzymes with variable spectrum and often low level resistance to extended-spectrum cephalosporins (cetriaxone, ceftazidime, cefepime...) and monobactams (aztreonam)
- Increasing number of species in which ESBL can be found
- MICs of ESBL-producing strains may be below susceptible breakpoints; (suspicion if MIC ≥ 2 µg/ml; NCCLS)
- Inhibition by clavulanate may be masked by concomitant production of AmpC enzymes (e.g. *Enterobacter* spp.)
- Chromosomal AmpC beta-lactamases may be mobilized on transferable plasmids to species in which ESBL are prevalent (e.g. *E. coli*, *Klebsiella* spp)

NCCLS/CLSI MIC Interpretation

Drug	Curre	Current NCCLS MIC Categories					
	S		R				
Aztreonam	8	16	32				
Cefotaxime	8	16-32	64				
Ceftriaxone	8	16-32	64				
Cefepime	8	16	32				

M100-S15

Methods for detection of ESBLs

Strategy of the NCCLS (USA)

• Screening

disks: (CPDOX, CAZ, CTX, CTRX, ATM)

 $(\ensuremath{\varnothing}\ \text{mm}) \qquad \leq 17 \qquad \leq 22 \qquad \leq 27 \qquad \leq 25 \qquad \leq 27$

MIC: \geq 2 µg/ml (C3, C4, ATM); \geq 8 µg/ml (CPDOX)

Confirmation

- Combination disks (CAZ, CTX + CA): \geq 5 mm vs CAZ / CTX alone

- MIC CAZ / CTX + CA: \leq 8 vs MIC of CAZ / CTX alone

ESBL E-test strips or combination disks (Oxoid) (sensitivity CAZ/ CTX: 90-95%)

Screening Tests for ESBLs in K. pneumoniae, K oxytoca, E. coli and P. mirabilis

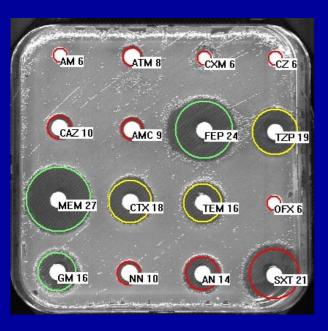
- Screen: MIC > 2 µg/ml for ceftazidime, aztreonam, cefotaxime or ceftriaxone or > 8 µg/ml for cefpodoxime (use of more than one drug will improve sensitivity of detection)
- Confirm: 8-fold or greater reduction in MIC in combination with clavulanic acid

NCCLS Document M100-S15, Jan 2005

Interpretation of antimicrobial susceptibility for ESBLs producing organisms

> NCCLS

- Guidelines only for *E. coli*, *Klebsiella* spp., *P. mirabilis*
- Interpret as resistant all cephalosporins including C3, C4 and aztreonam


CA-SFM

- Guidelines for all *Enterobacteriaceae* species
- Interpret S → I, I → R all cephalosporins including C3, C4 and aztreonam

No interpretative guidelines for β-lactam/ β-lactamase inhibitor combinations (e.g.: Amox/Clav., Pip/Tazo.)

Expression of various types of ESBLs in different bacterial species

E. aerogenes SHV-4 (+ AmpC)

E. coli TEM-3 (+ AmpC)

C. freundii TEM-24

CZ 10

TZP 25

SXT 6

GM 17

Inoculum effect in tests of various β-lactams with ESBL-producing *E. coli*

Inoculum (CFU/ml) and antibiotic	Range	MIC ₅₀ (µg/ml)	MIC ₉₀ (µg/ml)	% susceptible
10 ⁵				
Meropenem	≤0.015-0.06	≤0.015	0.03	100
Cefotaxime	0.25-512	2	64	79
Ceftazidime	1-1024	32	256	32
Cefepime	0.25-128	2	128	79
Pip-Tazo	1-32	2	8	95
10 ⁷				
Meropenem	0.03-0.05	0.06	0.12	100
Cefotaxime	2-1024	256	>1024	21
Ceftazidime	4->1024	>1024	>1024	5
Cefepime	4->128	>128	>128	5
Pip-Tazo	1-1024	8	1024	16

* Increase of MIC by \geq 8 at 100-fold higher inocula

Thomson, AAC 2001; 45: 3548

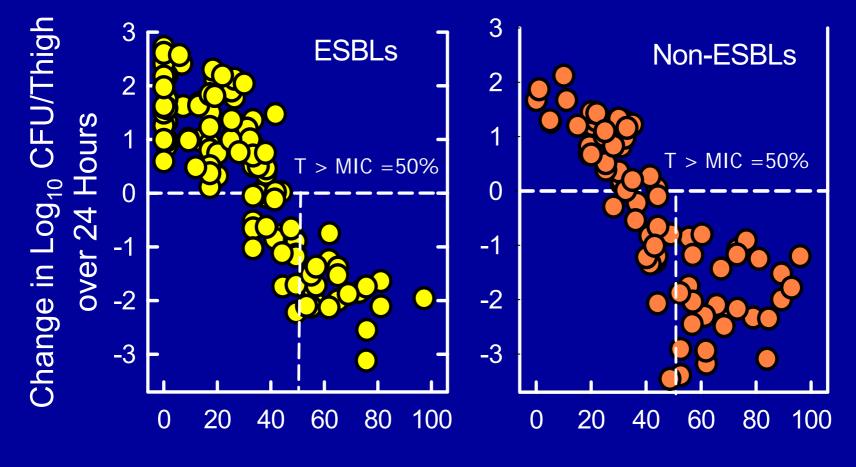
Importance of ESBL production on choice of antibiotic therapy and clinical outcome

- Multicenter prospective study of *K. pneumoniae* bacteremia (454 episodes, 12 centres US/Europe)
- 85 episodes (18%) due to ESBL-producing isolates
- Failure to use antibiotic active against ESBL-producing isolates associated with high mortality rate at day 14 (>60% vs 14% when AB active in vitro)
- Use of carbapenem within 5 day of bacteremia associated with lower mortality at day 14 than with other ABs active in vitro:
 - Imipenem/meropenem (3%)
 - Quinolones monotherapy: (36%)
 - Cephalosporin or β -lactam/ β -lactamases inhibitors: (44%)

→ Need for appropriate antibiotic choice in severe infections caused by ESBL-producing organisms

Paterson, Ann. Intern. Med., 2004

Outcome of treatment with a broad-spectrum cephalosporin in severe infections according to the MIC value of the ESBL-producing isolate


MIC (µg/ml)	Treatment failure at 72h	30-day mortality
<u>≤</u> 1	0/2 (0)	0/2 (0)
2	1/4 (25)	1/4 (25)
4	NC	NC
8	2/2 (100)	1/2 (50)
16	4/6 (66,7)	3/6 (50)
32	8/11 (72,7)	3/11 (27,3)

Clinical outcome in 42 Patients with ESBL-producing Klebsiella/E. coli bacteremia and treated with cephalosporin monotherapy

Outcome	MIC <u><</u> 1 μg/L	MIC 2 µg/L	MIC 4 µg/L	MIC 8 µg/L
Success	13 (81%)	4 (67%)	3 (27%)	1 (11%)
Failure	3 (19%)	2 (33%)	8 (73%)	8 (89%)

Paterson et al J Clin Micro 39:2206, 2001; Kim et al AAC 46:1481, 2002; Wong-Beringer et al Clin Infect Dis 34:135, 2002; Kang et al AAC 46: 4574; 2004; Bhavani et al 44rd ICAAC, Abstract K-1588, 2004

Activity of 4 Cephalosporins against Various *Enterobacteriaceae* with and without ESBLs in Murine Thigh-Infection Model

Time Above MIC (percent)

From D Andes

Clinical features and outcome of bacteremia caused by AmpC-type resistant Gram-negative isolates

- 389 episodes of Klebsiella pneumoniae bacteremia (1998-2002); 65 (17%) due to AmpC + or ESBL + 3rd G ceph-resistant isolates
- No difference in clinical severity and risk factors between AmpC group and ESBL group at time of presentation
- No difference in initial treatment failure at day 3 (52%) and mortality rate at day 7 (15%) and day 30 (29%) between the two groups (AmpC and ESBL)
- Mortality rate in 5/8 (62%) pts who received 3rd G ceph as definitive therapy (all MICs \geq 32 µg/ml) and in 1/11 (9%) pts who received imipenem or ciprofloxacin treatment

Cefepime for the treatment of infections due to ESBL-producing *Enterobacter aerogenes*

- Treatment of infections caused by ESBL-producing *E. aerogenes* in ICU patients (n=44)
- 60% pneumonia; 2 BSI (cefepime) 5 BSI (meropenem)
- Cefepime 3 x 2 g (n= 21); Imi/Meropenem 3 x 1 g (n=23)
- No statistical difference between groups in mortality, nor in clinical / bacteriological outcome
- Shorter duration of treatment in cefepime (8.5 d) vs meropenem group (11,4 d)
- No difference in outcome between cefepime alone vs. Cefepime + amikacin

PK/PD of Cefepime and Pipe-Tazo against *E. coli / Klebsiella* spp. Strains producing ESBL

	P for achieving T>MIC target measure					
Regimen	30%	40%	50%	60%	70%	
E.coli						
Pipe-tazo 3.375g/4h Pipe-tazo 3.375g/6h Cefepime 2 g/12h Cefepime 1 g/12h	96 91 100 100	92 86 100 99	90 73 100 99	86 50 100 98	77 28 99 96	
<i>K. pneumoniae</i> Pipe-tazo 3.375g/4h Pipe-tazo 3.375g/6h Cefepime 2 g/12h Cefepime 1 g/12h	77 69 100 99	72 57 100 96	65 43 100 95	57 29 98 94	48 16 96 93	

Ambrose, AAC 2003; 47: 1643

In vitro activity of temocillin against ESBLproducing *Enterobacteriacae* isolates

Species (n)	Temocillin %	MIC50	MIC90	ESBL type enzymes
	Susceptibility	(µg/ml)	(µg/ml)	
<i>Enterobacter aerogenes</i> (172)	93	4	16	82% TEM
<i>Enterobacter cloacae</i> (104)	99	2	8	90% SHV-12 + TOHO2
<i>Escherichia coli</i> (164)	92	8	16	43% TEM 37% TEM +CTX-M
<i>Klebsiella pneumoniae</i> (58)	95	2	16	47% TEM+ SHV + CTX-M
All species (533)	94	4	16	

Susceptible MIC \leq 16 µg/ml

Rodriguez-Villalobos, 15th ECCMID 2005, Abstract P1221

Difficult-to-treat organisms Gram-negative non-fermenters

CTZP 6 СТІС Б ATM 8 **IPM 10** CAZ 11 OFX 6 NN 8 FEP 14 SXT 6 Сбм б

P. aeruginosa

A. baumannii

Difficult-to-treat organisms Gram-negative non-fermenters

- Intrinsic resistance to several classes of agents, susceptibility profile poorly predictible
- High propensity to develop resistance in vivo during therapy (acquired or mutational resistance mechanisms)
- High level of resistance and multi-drug resistance through addition of several resistance mechanisms (poor probability of critical PK/PD attainment)
- Few existing therapeutic options, no new agents in development

Antimicrobial susceptibility of *P. aeruginosa* isolates in Belgian hospitals

Table 1. Results of susceptibility testing

	Susceptible ^a	Intermediate ^a	Resistant ^a	$MIC_{50}(mg/L)$	MIC ₉₀ (mg/L)
Gentamicin	67	9.5	23.5	4	256
Tobramycin	79.5	1	19.5	1	128
Amikacin	85	4.5	10.5	8	64
Isepamicin	81	7	12	8	64
Ofloxacin	49.75	12.5	37.75	4	128
Levofloxacin	61.5	11	27.5	2	64
Ciprofloxacin	71	5	24	0.5	32
Piperacillin	76	-	24	16	>256
Piperacillin/tazobactam	83	-	17.5	16	256
Ticarcillin/clavulanic acid	63	_	37	64	256
Aztreonam	17.75	26.75	55.5	32	256
Ceftazidime	59	12.5	28.5	8	64
Cefepime	50.5	20	29.5	8	64
Meropenem	81.5	9	9.5	2	8

"Percentage of all isolates.

Van Eldere, JAC 2003; 51: 347-52

Emergence of antimicrobial resistance of *P. aeruginosa* in relation to previous drug exposure

271 pts; (Follow-up 3810 j): Resistance 10,2% (7.4/1000 pts.day)

Drug administred	Event (N°/total Rx)	OR-Res	OR-Res same AB	Р
Ceftazidime	10/125	0.7	0.8	.7
Ciprofloxacin	12/98	0.8	9.2	.04
Imipenem	11/37	2.8	44.1	.001
Piperacillin	9/91	1.7	5.2	.01

Carmeli et al., AAC 1999

Carbapenemases

- Zinc β-lactamases (Classe B): IMP-1/17, VIM-1/10
 - P. aeruginosa, Acinetobacter, Enterobacteriaceae....
 - Mobile genes (Integrons-transposons-plasmids)
 - Broad-spectrum, high level-resistance to all β-lactams (except aztreonam)
 - South-East Asia, Italy, Greece, France
 - No clear relationship with previous exposure to carbapenems
- Other β-lactamases (Classe D, A): OXA-23,24,25,26,40, 58... SME-1, NMC-A, KPC-1/2
 - Acinetobacter spp. E. cloacae, Serratia, Klebsiella
 - Variable level of resistance to carbapenems (Imi <u>></u> Mero)
 - Wide diffusion of OXA-type carbapenemases in Acinetobacters in many countries

Detection of carbapenemases

Variable phenotypic expression

Resistance to all beta-lactams, variable resistance levels to imi/merop Multi-drug resistant (aminoglycosides, cotrimoxazole, tetra, quinolones)

<u>Metallo-beta-lactamase</u>: MIC > 256 μg/ml (Imi/mero) MIC > 256 μg/ml (ceftaz, cefep)

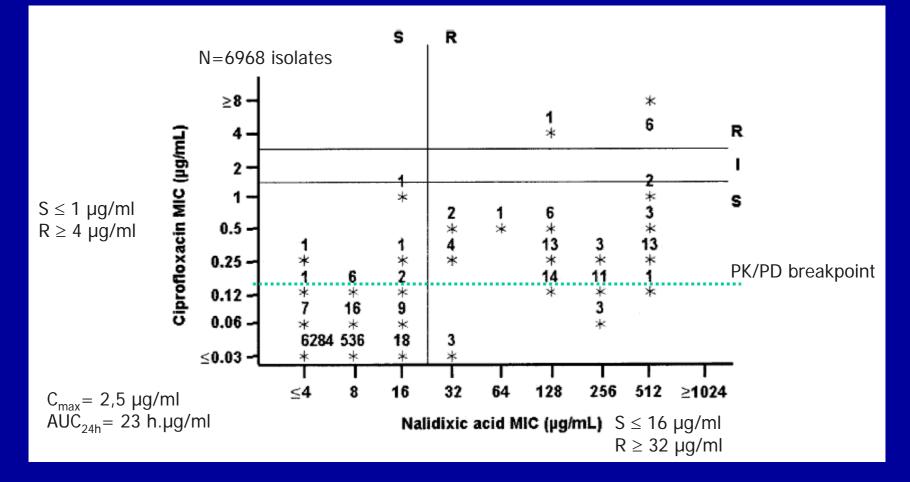
Synergy between imipenem (or ceftazidime) and EDTA (or 2-MPA) False-positive and false-negative results Metallo-B-lactamases (VIM, IMP): S to aztreonam

Other carbapenemases (Class D) difficult to detect by phenotypic test: Increase of MIC to Imi > mero (2-8 μ g/ml)

What to do?

- Test and report <u>only</u> agents for which the species constitutes a potential target for therapy
- Do not extrapolate susceptibility results from one agent to another within a class (e.g. imipenem, meropenem)
- Quantitative MIC testing required in severe infections (bacteremia, ICU patients)
- Repeat testing during therapy (every 3-7 d) to screen for emergence of resistance during therapy

What to do?



- Consider in vitro synergy tests between different drugs classes (checkerboard, killing curves) (e.g. cystic fibrosis)
 - Beta-lactams, aminoglycosides, quinolones
- Consider testing of old drugs (e.g. colistin) or agents that might potentially be useful in combination therapy
 - Acinetobacter: sulbactam, tigecycline
 - Pseudomonas: rifampin, fosfomycin

In vitro susceptibility testing of quinolones against Gram-negative organisms

- Species-related clinical MIC breakpoint of fluoroquinolones dependent on MIC distribution in a species (EUCAST)
 - Enterobacteriaceae/Pseudomonas: Ciprofloxacin S \leq 0.5 µg/ml; R >1 µg/ml
 - N. gonorrhoea/N. meningitidis: S \leq 0.03 µg/ml; R > 0.06 µg/ml
- Clinical or PK/PD related breakpoints (EUCAST NCCLS) (Test extra-intestinal salmonella isolates for resistance to nalidixic acid; Inform clinician that Nalidixic ac.-R isolates might not respond to fluoroquinolone Rx)
- Screen for low-level resistance in *Enterobacteriaceae* by testing least active compounds (norfloxacin)
 (CA-SFM: Activity of fluoroquinolones should be individually tested for Norfloxacin-I or –R isolates)

MIC scatterplots for nalidixic acid versus ciprofloxacin for non-Typhi salmonellae (NCCLS, 1996-2000)

Crump, CID 2003

In vitro susceptibility testing of quinolones against Gram-negative organisms

- Do not report results for species that are poor target for therapy with the drug or when there is a lack of data
 - e.g. Moxifloxacin and Pseudomonas
 - E.g. Levofloxacin and Gram-negative anaerobes
- Do only report results with most active compounds within a class
 - e.g. ciprofloxacin and Pseudomonas
- Quantitative results (MIC/zone sizes) in case of severe infections (bacteremia, ICU patient) and/or in difficult-to-treat organisms